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Abstract
Purpose Alzheimer’s disease (AD) is a heterogeneous disease that presents a broad spectrum of clinicopathologic profiles. 
To date, objective subtyping of AD independent of disease progression using brain imaging has been required. Our study 
aimed to extract representations of unique brain metabolism patterns different from disease progression to identify objective 
subtypes of AD.
Methods A total of 3620 FDG brain PET images with AD, mild cognitive impairment (MCI), and cognitively normal (CN) 
were obtained from the ADNI database from 1607 participants at enrollment and follow-up visits. A conditional variational 
autoencoder model was trained on FDG brain PET images of AD patients with the corresponding condition of AD severity 
score. The k-means algorithm was applied to generate clusters from the encoded representations. The trained deep learning-
based cluster model was also transferred to FDG PET of MCI patients and predicted the prognosis of subtypes for conversion 
from MCI to AD. Spatial metabolism patterns, clinical and biological characteristics, and conversion rate from MCI to AD 
were compared across the subtypes.
Results Four distinct subtypes of spatial metabolism patterns in AD with different brain pathologies and clinical profiles were 
identified: (i) angular, (ii) occipital, (iii) orbitofrontal, and (iv) minimal hypometabolic patterns. The deep learning model was 
also successfully transferred for subtyping MCI, and significant differences in frequency (P < 0.001) and risk of conversion 
(log-rank P < 0.0001) from MCI to AD were observed across the subtypes, highest in S2 (35.7%) followed by S1 (23.4%).
Conclusion We identified distinct subtypes of AD with different clinicopathologic features. The deep learning-based approach 
to distinguish AD subtypes on FDG PET could have implications for predicting individual outcomes and provide a clue to 
understanding the heterogeneous pathophysiology of AD.
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Data used in preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). As such, the investigators within the ADNI contributed 
to the design and implementation of ADNI and/or provided data but did 
not participate in analysis or writing of this report. A complete listing of 
ADNI investigators can be found at http:// adni. loni. usc. edu/ wp- conte nt/ 
uploa ds/ how_ to_ apply/ ADNI_ Ackno wledg ement_ List. pdf.
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Introduction

Alzheimer’s disease (AD) is a heterogeneous disease that 
presents a broad spectrum of clinicopathologic profiles with 
variability in age of onset, clinical presentation, tau-related 
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pathology, and brain atrophy, despite common pathologic 
features, including amyloid and tau deposition [1–4]. Due 
to its heterogeneous biological pathology and clinical mani-
festations, there have been attempts to reveal biological sub-
types of AD through structural magnetic resonance imaging 
(MRI) and tau positron emission tomography (PET) [5–7].

Since  [18F]fluorodeoxyglucose (FDG) PET represents 
neurological functions by neurometabolism coupling, it 
supports the differential diagnosis of neurodegenerative 
diseases [8, 9]. FDG PET has also been used to predict the 
progression of mild cognitive impairment (MCI) [10, 11]. 
Since FDG PET reflects spatial neuronal activity patterns 
in various diseases, it is more suitable than other images 
to match clinical symptom characteristics and image-based 
disease subtypes [12–14]. Recently, many attempts have 
been reported to differentiate spatial hypometabolic pat-
terns of AD subtypes in a data-driven or hypothesis-driven 
manner [15–18]. However, a main concern of previous 
approaches in defining AD subtypes on various modali-
ties has been the difficulty in differentiating the effect of 
disease progression [19]. The intrinsic biological subtype 
of AD differentiated from the disease severity has been a 
challenge since it should be achieved by patient data with 
various disease stages.

In this study, we utilized conditional variational autoen-
coder (cVAE) on FDG PET of AD subjects with the corre-
sponding condition of AD severity score. VAE is an unsuper-
vised deep learning method that learns representations to map 
data from latent space in a probabilistic manner [20]. Addi-
tionally, cVAE uses conditioned variables as auxiliary inputs 
to reflect hidden information other than given conditions [21]. 
Decreased FDG uptake patterns in the cortex mostly depend 
on disease severity, and it has been difficult to define sub-
types by removing the effect of disease progression. Since a 
cVAE model directly uses conditional variables to generate 
images from latent features, latent features are expected to 
represent other data-specific features different from condi-
tions, i.e., disease severity. In the current study, we aimed to 
identify AD subtypes using deep learning-based clustering 
on FDG PET images to understand the distinct spatial pat-
terns of neurodegeneration. We also aimed to investigate the 
clinicopathologic features of subtypes defined by spatial brain 
metabolism patterns.

Materials and methods

Subjects

Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database. The ADNI was launched in 2003 to 
test whether serial MRI, PET, other biological markers, 

and clinical and neuropsychological assessment can be 
combined to measure the progression of MCI and early 
AD. We obtained 3620 FDG brain PET images from 1607 
participants at enrollment (baseline) and follow-up visits 
between 2005 and 2020 from the ADNI database. Details 
regarding FDG PET data acquisition and preprocessing are 
available in the Supplementary Methods [22]. We defined 
groups of FDG PET images with AD, MCI, and cogni-
tively normal (CN) based on the clinical diagnosis. Each 
repeated FDG PET scan of the same individual at different 
visits was independently assigned to the groups based on 
the clinical diagnosis at the time of the visit for the study. 
Based on the criteria, we included 838 FDG PET scans 
with AD, 1761 scans with MCI, and 1021 scans with CN 
for the present study. Written informed consent for cogni-
tive testing and neuroimaging prior to participation was 
obtained from all subjects, and the study protocols were 
approved by the institutional review boards of all partici-
pating institutions.

Deep learning‑based model for subtyping AD 
and MCI

We utilized cVAE to find hidden representations of FDG 
PET image patterns in AD. A total of 838 FDG brain PET 
images with AD were used as input images. The Clinical 
Demetria Rating Scale Sum of Boxes (CDR-SB) score was 
used as the corresponding condition vector of each image. 
CDR-SB is commonly used in clinical and research settings 
to stage dementia severity [23], so we chose CDR-SB as an 
input condition to remove the effect of disease severity of 
AD in latent features and find hidden representations. The 
CDR-SB score was rescaled to the range of 0 to 1, which 
was divided by a maximum CDR-SB score of 18 and used 
as input. The details of the cVAE architecture and training 
are summarized in Supplementary Methods (Supplemen-
tary Table 1 and Supplementary Fig. 1) [24]. To identify 
AD subtypes from the hidden representations on FDG 
PET image patterns, the k-means algorithm was applied to 
generate clusters from the encoded latent representations 
[25, 26]. The number of clusters was determined using 
the elbow method [27, 28]. Subsequently, the trained deep 
learning-based FDG PET cluster model in AD was directly 
transferred to the MCI images, without further training for 
subtyping MCI, to predict their subtypes and to identify 
differential trajectories and prognoses of subtypes in MCI. 
The details of the clustering method and model transfer are 
summarized in Fig. 1 and Supplementary Methods.

Clinical and biological characterization

We compared demographic, cognitive, and biomarker 
variables between clusters for the clinical and biological 
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characterization of subtypes. Characteristics of subtypes 
were compared in groups with all AD images regardless of 
repeated visits (n = 838); AD images only at the baseline 
visit without repeated scans from the same subject (n = 
292); and all MCI images regardless of repeated visits (n 
= 1761). The demographic analyses compared age, sex, 
and years of education. The cognitive analyses compared 
CDR-SB, Mini-Mental State Examination (MMSE), Mon-
treal Cognitive Assessment (MOCA) scores, and four cog-
nitive domain scores. For the cognition domain scores, we 
used Alzheimer’s Disease Sequencing Project Phenotype 
Harmonization Consortium composite cognitive scores: 
the harmonized composite memory score, executive func-
tion score, language score, and visuospatial score [29]. 
The biomarker variables for the comparison between clus-
ters included APOE4 carriage, cerebrospinal fluid (CSF) 
amyloid-beta (Abeta), total tau (t-tau), phosphorylated tau 
(p-tau), and imaging biomarkers. The standardized uptake 
value ratio (SUVR) of  [18F]florbetapir (AV45) PET was 
the mean florbetapir uptake in the cortex of predefined 
volumes of interest, which was then divided by the activ-
ity of the whole cerebellum as a reference region. The 
amyloid positivity was defined as SUVR ≥ 1.11. The hip-
pocampal volume to intracranial volume ratio (HV/ICV) 
measured on MRI was also calculated as an indicator of 
hippocampal atrophy.

Prognosis prediction of MCI subtypes

We defined as MCI converters those who converted from MCI 
to AD within 2 years from the baseline visit and as non-con-
verters those who did not convert to AD during a follow-up 
of at least 2 years from the baseline visit. The time to conver-
sion from MCI to AD was calculated for the subjects who 
had a change in diagnosis from MCI to AD at any time point. 
Kaplan-Meier survival curves were generated to evaluate the 
risk of conversion from MCI to AD across the subtypes.

Statistical analysis

Values are expressed as percentages or means with standard 
deviations (SDs). Group differences in demographic and 
clinical variables in subtypes were evaluated using one-way 
ANOVA with post hoc analysis and the chi-square test. The 
number of missing values in the analysis of each group is 
provided in the supplementary data. Averaged Z scores of 
demographic, cognitive, and biomarker variables of each 
subtype were used for heatmap generation. Kaplan-Meier 
survival analysis was used to test for subtype differences in 
conversion from MCI to AD, and curves were compared using 
the log-rank test. Statistical analyses were performed using 
Jamovi software (The jamovi project (2021). jamovi (Version 
1.6). Retrieved from https:// www. jamovi. org), and a P value 
less than 0.05 was considered statistically significant.

Fig. 1  Study design of the deep learning-based FDG PET cluster model for AD and MCI subtypes. The framework shows the clustering method 
for AD subtypes and the transfer of the deep learning model for MCI subtypes

https://www.jamovi.org
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Results

Spatial brain metabolism pattern in AD subtypes

Of the 838 FDG brain PET images of patients with AD, four 
distinct AD subtypes were identified by deep learning-based 
FDG PET clusters. We set 4 as the subtype number since 
the inflection point appeared when the number was 4 on the 
elbow method plot (Supplementary Fig. 2).

Spatial brain metabolism patterns of AD subtypes on 
FDG PET with cerebellar normalization were compared with 
those of the CN. All AD subtypes shared a common pattern 
of hypometabolism involving the frontal, parietal, and tem-
poral lobes, precuneus, and posterior cingulate cortex. In 
addition to typical AD patterns shared across all subtypes, 
subtype-specific regions of hypometabolism were observed 
in each subtype (Fig. 2a and Supplementary Fig. 3). Subtype 

1 (S1: angular) included 185 (22%) AD patients and showed 
prominent hypometabolism in the angular gyrus with a dif-
fuse hypometabolism pattern involving the parietotemporal, 
frontal, limbic, occipital, and cingulate cortices. Subtype 2 
(S2: occipital) included 161 (19%) AD patients and showed 
prominent hypometabolism in the occipital cortex with a 
posterior-predominant hypometabolism pattern involving the 
occipital, posterior-parietal cortices, and precuneus. Subtype 
3 (S3: orbitofrontal) included 224 (27%) AD patients and 
showed prominent hypometabolism in the orbitofrontal cor-
tex with an anterior-predominant hypometabolism pattern 
involving the frontal, limbic, and anterior cingulate cortices. 
Subtype 4 (S4: minimal) included 268 (32%) AD patients 
and showed no additional hypometabolic region. Subtype-
specific spatial metabolism patterns also corresponded to 
the regions observed in the comparisons between one sub-
type and all of the other subtypes (Fig. 2b). To exclude the 
effects of overlapping images from the same subject at dif-
ferent visits, spatial metabolism patterns of AD subtypes 
for the individuals only at the baseline visits were compared 
with CN controls using FDG PET images with cerebellar 
normalization. For the FDG PET with AD at the baseline 
visit, S1 (angular), S2 (occipital), S3 (orbitofrontal), and S4 
(minimal) included 58 (20%), 52 (18%), 83 (28%), and 99 

Fig. 2  Distinct subtypes of spatial metabolism patterns in AD. Spa-
tial metabolism patterns of AD subtypes compared with a cognitively 
normal controls and b all other subtypes. The colored bar indicates t 
values. c Frequency of AD subtypes. Heatmaps of clinical and bio-
logical characteristics of AD subtypes compared in groups with d all 
AD images and e AD images at the baseline visit

◂

Table 1  Clinical and biological characteristics of AD subtypes

The data are expressed as percentages or means with standard deviations in parentheses. Missing values are excluded. *P < 0.05, **P < 0.01, 
***P < 0.001

CN AD (n = 838) P value, global compari-
son (S1, S1, S3, and S4)

S1 S2 S3 S4

Demographics
  n (%) 1021 185 (22%) 161 (19%) 224 (27%) 268 (32%)
  Age, years 75.7 (6.2) 76.4 (7.2) 75.0 (7.5) 78.2 (6.5) 75.2 (7.9) < 0.001***
  Sex, female (%) 43% 5% 32% 41% 72% < 0.001***
  Education, years 16.3 (2.8) 16.1 (3.3) 15.5 (2.6) 15.3 (2.7) 15.1 (2.9) 0.009**

Cognition
  CDR-SB 0.1 (0.4) 5.5 (2.7) 5.2 (2.7) 5.4 (2.6) 5.3 (2.3) 0.609
  MMSE 29.0 (1.2) 21.9 (4.0) 22.0 (4.4) 22.3 (3.8) 22.2 (3.9) 0.699
  MOCA 25.8 (2.5) 16.7 (4.9) 16.0 (5.2) 17.1 (4.8) 16.8 (5.0) 0.645
  Memory score 0.86 (0.51) −0.92 (0.49) −0.81 (0.53) −0.89 (0.46) −0.90 (0.45) 0.217
  Executive score 0.74 (0.48) −0.55 (0.72) −0.71 (0.74) −0.36 (0.65) −0.45 (0.70) < 0.001***
  Language score 0.80 (0.49) −0.29 (0.59) −0.24 (0.63) −0.27 (0.62) −0.22 (0.64) 0.630
  Visuospatial score 0.10 (0.31) −0.36 (0.61) −0.60 (0.74) −0.19 (0.52) −0.26 (0.62) < 0.001***

Biomarker
  AV45 SUVR 1.12 (0.19) 1.40 (0.24) 1.37 (0.22) 1.35 (0.25) 1.39 (0.21) 0.585
      Amyloid positivity (%) - 87% 89% 79% 88% -
  APOE4 carrier (%) 27% 68% 64% 68% 66% 0.249
  CSF Abeta, pg/ml 1211 (439) 580 (276) 677 (402) 681 (345) 664 (280) 0.159
  CSF t-tau, pg/ml 245 (91) 293 (108) 382 (158) 358 (124) 423 (173) < 0.001***
  CSF p-tau, pg/ml 23 (10) 29 (12) 38 (17) 35 (14) 41 (19) < 0.001***
  HV/ICV,  cm3/mm3 4.78 (0.68) 3.37 (0.56) 3.80 (0.59) 3.50 (0.57) 3.85 (0.73) < 0.001***
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(34%), respectively. The subtype-specific hypometabolism 
patterns observed in AD at the baseline visit resembled those 
observed in the analysis using all AD images (Supplemen-
tary Fig. 4). Subgroup analysis with amyloid-positive AD 
also showed similar subtype-specific spatial metabolism pat-
terns (Supplementary Fig. 5a-b ).

We attempted to check whether the subtype persisted in 
the case of longitudinal follow-up PET images. The dis-
tances between centroids and individuals in each subtype 
showed a stable trend without dramatic changes, implying 
that the subtypes were stable during longitudinal follow-up 
(Supplementary Fig. 6).

Clinical and biological characterization of AD 
subtypes

CDR-SB scores did not show a significant difference across 
AD subtypes (Table 1, Supplementary Table 2 and 3). Com-
pared to other subtypes, S1 (angular) included the highest 
frequencies of males and more educated individuals. Indi-
viduals in S1 showed less CSF Abeta and higher SUVR of 
AV45 PET, but lower CSF p-tau and t-tau levels. S1 indi-
viduals tended to have smaller hippocampal volumes. S2 
(occipital) individuals were younger and had more overall 
tau burden but less hippocampal atrophy. S2 individuals 
tended to have better relative memory and language scores 
but worse relative executive and visuospatial scores. S3 
(orbitofrontal) individuals were older and had less amyloid 
burden but more hippocampal atrophy. S3 individuals tended 
to have better executive and visuospatial scores. Finally, S4 
(minimal) included the highest frequencies of females and 
less educated individuals. S4 individuals had more tau bur-
den but less hippocampal atrophy. S4 individuals tended 
to have better executive, language, and visuospatial scores 
(Fig. 2c–e, Table 1). Subgroup analysis with amyloid-pos-
itive AD also showed similar patterns of clinical and bio-
logical characteristics across the subtypes (Supplementary 
Fig. 5c-d, Supplementary Table 4).

Applying the model to classify MCI subjects

The trained model in AD was transferred to the MCI images 
for subtyping MCI. Spatial brain metabolism patterns with 
cerebellar normalization of MCI subtypes (MCI-S) were 
compared with those of the CN (Fig. 3a). MCI-S1, MCI-
S2, and MCI-S3 shared a typical AD pattern of hypome-
tabolism involving the frontal, parietal, and temporal lobes, 

precuneus, and posterior cingulate cortex. Unlike S4 in AD, 
MCI-S4 showed a minimal region of hypometabolism com-
pared to CN. In addition to the shared pattern of hypometab-
olism, subtype-specific spatial metabolism patterns in MCI 
resembled those observed in AD. As shown in AD subtypes, 
MCI-S1 (angular) showed prominent hypometabolism in the 
angular gyrus with a diffuse hypometabolism pattern. MCI-
S2 (occipital) showed prominent hypometabolism in the 
occipital cortex with a posterior-predominant hypometabo-
lism pattern, and MCI-S3 (orbitofrontal) showed prominent 
hypometabolism in the orbitofrontal cortex with an anterior-
predominant hypometabolism pattern. MCI-S4 (minimal) 
did not show additional subtype-specific regions of hypo-
metabolism. Subtype-specific spatial metabolism patterns 
in MCI also corresponded to the regions observed in the 
comparisons between one subtype and all of the other sub-
types (Fig. 3b). Different from the distribution of subtypes 
in AD, individuals in the MCI group were less distributed in 
S1 and S2 but more distributed in S3 and S4: the numbers in 
S1, S2, S3, and S4 were 252 (14%), 202 (11%), 596 (34%), 
and 711 (40%), respectively (Fig. 3c).

CDR-SB scores were significantly different across the 
MCI subtypes (P < 0.001); CDR-SB scores were the high-
est in MCI-S1 but the lowest in MCI-S3. MCI-S1 included 
the highest frequency of males, and the individuals in MCI-
S1 had more amyloid burden and more hippocampal atro-
phy but less overall tau burden, which was a similar pattern 
observed in AD subtypes. In addition, individuals in MCI-
S1 tended to have lower memory, executive, language, and 
visuospatial scores. Individuals in MCI-S2 were younger 
than those in other subtypes. MCI-S2 tended to have more 
overall tau burden and better language but worse executive 
and visuospatial scores, as similarly observed in S2 of AD. 
Individuals in MCI-S3 tended to have a less amyloid burden 
and higher executive and visuospatial scores, as observed in 
S3 of AD. Finally, MCI-S4 included the highest frequencies 
of females and less educated individuals, as observed in S4 
of AD. Individuals in MCI-S4 had the most favorable clini-
cal presentation: higher MOCA, MMSE, memory, executive, 
language, and visuospatial scores. MCI-S4 had the lowest 
amyloid deposits and less hippocampal atrophy among the 
subtypes but had more tau burden (Fig. 3d and Supplemen-
tary Table 5).

Prognosis prediction of subtypes for conversion 
from MCI to AD

There was a significant difference in the frequency of MCI 
to AD conversion within a 2-year follow-up across the sub-
types (P < 0.001). MCI to AD conversion was observed 
more frequently in S1 (23.4%, 18/77) and S2 (35.7%, 25/70) 
than in S3 (16.7%, 35/210) and S4 (12.7%, 31/245) (Fig. 4a). 
Individuals in S2 also had a significantly faster conversion 

Fig. 3  Distinct subtypes of spatial metabolism patterns in MCI. Spa-
tial metabolism patterns of MCI subtypes compared with a cogni-
tively normal controls and b all other subtypes. The colored bar indi-
cates t values. c Frequency of MCI subtypes. d Heatmap of clinical 
and biological characteristics of MCI subtypes

◂
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from MCI to AD (S2 vs. S3, 24.0 vs. 35.3 months, P = 
0.047; S2 vs. S4, 24.0 vs. 34.0 months, P = 0.037; Fig. 4b 
and Supplementary Table 6). There was a significant differ-
ence in the risk of conversion across the subtypes (log-rank 
P < 0.0001). S2 showed the highest risk of conversion from 
MCI to AD, followed by S1 (Fig. 4c).

Discussion

In this study, we identified distinct subtypes of spatial brain 
metabolism patterns in AD with different clinicopathologic 
features using deep learning-based FDG PET clusters (sum-
marized in Fig. 5). Our deep learning model was also suc-
cessfully transferred to predict the prognosis of subtypes for 
conversion from MCI to AD.

Our results suggest that the deep learning model could 
predict the distinct subtype of brain metabolism pat-
terns in AD, independent of disease progression. The 

hypothesis-driven approach to neuroimaging might not 
provide a comprehensive description and cannot reflect het-
erogeneous clinicopathologic profiles of AD since the study 
design was limited to the prior definition of neuropatho-
logic subtypes. The unsupervised approach could help to 
make new discoveries of unappreciated subtypes, and it is 
expected to overcome the limitations of prior definitions in 
hypothesis-driven studies. Above all, the key contribution of 
our study is the application of the cVAE model, which has a 
structure of additional input information for the condition of 
each image [21, 30]. When we provided AD severity infor-
mation (CDR-SB) as an input condition of FDG PET images 
in the cVAE model, the latent space could reflect hidden het-
erogeneity information about AD other than disease sever-
ity. When cVAE with the CDR-SB condition was applied, 
there were no significant differences in CDR-SB across the 
AD subtypes (P = 0.609), and the brain metabolism pattern 
showed distinct features with different clinicopathologic pro-
files. The considerable disagreement in subtypes between 

Fig. 4  Prognosis of subtypes for conversion from MCI to AD. a Fre-
quency of MCI converters across subtypes. The y-axis shows the 
percentage of MCI converters and non-converters in each subtype. b 

Time to conversion from MCI to AD. The y-axis shows the months 
for the conversion from MCI to AD in each subtype. c Kaplan-Meier 
survival curve for the conversion from MCI to AD across subtypes
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previous reports and the current study is likely due to the 
presence or absence of severity dimensions, along with the 
AD subtypes.

In this study, we could predict the prognosis of the 
AD subtype by transferring our deep learning model for 
subtyping MCI. Biomarkers for the early detection of 
MCI conversion and prediction of prognosis and disease 
course are important to submit patients to early treat-
ment before the staging of AD. There have been many 
previous studies on the development of biomarkers and 
models to predict MCI to AD conversion [31–33]. In 
the clinic, it is even more difficult to differentiate bio-
logical subtypes and predict the prognosis of individual 
AD and MCI patients since the symptoms and clinical 
characteristics are diverse and complex. In our study, 
the predicted MCI subtypes by transferring the trained 
model revealed significantly different prognoses for MCI 
to AD conversion. The spatial metabolism patterns and 
the clinical profiles in MCI subtypes were similar but 
with some differences from those in AD. These findings 
imply that subtypes might have distinct trajectories of 
disease progression with different features in earlier and 
late stages. Moreover, the heterogeneity of MCI subjects, 
which included patients originating from other disease 
populations who were not associated with the progres-
sion of amyloid pathology, affects the differences in the 
subtyping of MCI. Recent studies have revealed that the 
AD-derived subtype patterns in MCI, clustered based on 
the patterns observed in AD, exhibited distinct biologi-
cal and clinical characteristics with a different risk of 
progression to AD, which aligns with the findings in our 
study [15, 34, 35]. MCI is a heterogeneous group, which 
may include subjects without AD-related pathophysiol-
ogy, representing a potential limitation of this approach. 
However, FDG PET can offer functional brain patterns 
that are associated with clinical symptoms and reflect the 

continuous symptomatic spectrum of AD. Consequently, 
we applied our clustering patterns to MCI patients. While 
distinct subtypes might ultimately converge into a com-
mon pattern in the later stages of the disease, using deep 
learning-based models to predict outcomes in AD and 
MCI subtypes with FDG PET has significant clinical 
implications. This approach can potentially aid in indi-
vidualized diagnosis and early intervention, which could 
inform future treatment strategies for AD.

The subtypes of AD based on FDG PET have added 
value as a predictive biomarker compared to other bio-
markers as well as revealing the heterogeneity of AD. An 
advantage of FDG PET over amyloid PET is its ability 
to predict clinical stability or progression of cognitive 
decline. This is evidenced by the fact that amyloid-pos-
itive subjects without hypometabolic abnormalities have 
remained clinically stable over time [36]. The APOE4, 
which is the strongest genetic risk factor for AD, also pre-
sents limitations as biomarkers reflecting the heterogeneity 
of MCI and AD, as atypical phenotypes are less likely to 
carry APOE4 compared to those with typical presentations 
[37–39]. We are not simply trying to show that FDG PET-
based subtypes are better prognostic markers than other 
biomarkers. The important idea behind our findings is that 
AD is heterogeneous, that FDG PET can indicate sub-
types, and that these subtypes may be meaningful because 
other biomarkers and prognoses differ across subtypes. 
The heterogeneity of AD might be linked to complex 
biological processes including amyloid-tau-neurodegen-
eration (A/T/N) and various genetic, cellular, or network 
abnormalities. Thus, our distinct subtypes of FDG will 
serve as a powerful tool that can be used in combination 
with other biomarkers.

In the clinical setting, differentiating subtype-specific 
metabolism patterns on FDG PET only with visual inter-
pretation is very difficult and subject to interobserver 

Fig. 5  Summarizing subtypes 
of spatial metabolism patterns 
in AD and MCI. Four distinct 
subtypes of spatial metabolism 
patterns with different brain 
pathologies and clinical profiles 
were identified. The text in bold 
indicates subtype-specific hypo-
metabolic regions from each 
subtype (colored blue in the 
brain). The text in the box indi-
cates the clinical and biological 
characteristics of each subtype
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variability. Because of diffuse overlapping regions of 
hypometabolism (typical AD pattern) across the subtypes, 
it is difficult to distinguish subtype-specific hypometabolic 
regions only with visual interpretation, as shown in our 
generated images (Supplementary Fig. 7) and statistical 
parametric maps of FDG PET with cerebellar normaliza-
tion. It could also be extended to the form of artificial 
intelligence-empowered imaging biomarkers, which could 
provide new information based on deep learning beyond 
visual interpretation.

Some limitations should be noted. First, the deep learn-
ing model should be further validated by AD datasets, 
although the ADNI database was large and obtained from 
multiple centers. Second, the deep learning model trained 
in the AD group was directly transferred to the MCI group. 
However, MCI is a heterogeneous syndrome resulting from 
AD, as well as non-AD and non-neurodegenerative condi-
tions [40–43], implying that some of the patients in our MCI 
group might have originated from other disease populations 
different from AD. Finally, a larger longitudinal study might 
be warranted to investigate the subtype-specific trajectory of 
spatial metabolism changes and clinicopathologic profiles.

Conclusion

In this study, we identified distinct subtypes in AD with 
different brain pathologies and clinical profiles. Addition-
ally, our model was successfully transferred to predict the 
prognosis of subtypes for conversion from MCI to AD. Our 
results suggest that distinct AD subtypes on FDG PET could 
have implications for individual clinical outcomes and pro-
vide a clue to understanding a broad spectrum of AD in 
terms of pathophysiology.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00259- 023- 06440-9.
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